A Primal-Dual Large-update Interior-point Algorithm for Semi-definite Optimization Based on a New Parametric Kernel Function

نویسندگان

  • Dequan Zhao
  • Mingwang Zhang
  • Zhenghai Huang
  • DEQUAN ZHAO
  • MINGWANG ZHANG
چکیده

Based on a new parametric kernel function, this paper presents a primaldual large-update interior-point algorithm (IPM) for semi-definite optimization (SDO) problems. The new parametric function is neither self-regular function nor the usual logarithmic barrier function. It is strongly convex and possesses some novel analytic properties. We analyse this new parametric kernel function and show that the proposed algorithm has favorable complexity bound in terms of the analytic properties of the kernel function. Moreover, the complexity bound for our large-update IPM is shown to be O( √ n(logn) log ε ). Some numerical results are reported to illustrate the feasibility of the proposed algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An interior-point algorithm for $P_{ast}(kappa)$-linear complementarity problem based on a new trigonometric kernel function

In this paper, an interior-point algorithm  for $P_{ast}(kappa)$-Linear Complementarity Problem (LCP) based on a new parametric trigonometric kernel function is proposed. By applying strictly feasible starting point condition and using some simple analysis tools, we prove that our algorithm has $O((1+2kappa)sqrt{n} log nlogfrac{n}{epsilon})$ iteration bound for large-update methods, which coinc...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Interior-point algorithm for linear optimization based on a new trigonometric kernel function

In this paper, we present a new primal-dual interior-point algorithm for linear optimization based on a trigonometric kernel function. By simple analysis, we derive the worst case complexity for a large-update primal-dual interior-point method based on this kernel function. This complexity estimate improves a result from [1] and matches the one obtained in [2].

متن کامل

A Generic Primal-dual Interior Point Methods Based on a New Kernel Function

In this paper we present a generic primal-dual interior point methods (IPMs) for linear optimization in which the search direction depends on a univariate kernel function which is also used as proximity measure in the analysis of the algorithm. The proposed kernel function does not satisfy all the conditions proposed in [2]. We show that the corresponding large-update algorithm improves the ite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015